
Competing Bandits in Non-Stationary
Matching Markets

Avishek Ghosh

IIT Bombay

Joint work with

Abishek Sankararaman (Amazon)

Kannan Ramchandran (UC Berkeley)

Tara Javidi (UC San Diego)

Arya Mazumdar (UC San Diego)

RL Workshop, IISc Bangalore
Feb, 2024

1 / 33

Outline

■ Matching Markets—a Multi Agent Multi-Armed Bandit formulation

■ Competition—Collision—Resolution of conflicts

■ Dynamic (Non-Stationary) Markets

♣ Algorithm for Non-Stationary Matching Markets

♣ Insights for 2 agents

♣ Analysis: Theoretical and Empirical

2 / 33

Outline

■ Matching Markets—a Multi Agent Multi-Armed Bandit formulation

■ Competition—Collision—Resolution of conflicts

■ Dynamic (Non-Stationary) Markets

♣ Algorithm for Non-Stationary Matching Markets

♣ Insights for 2 agents

♣ Analysis: Theoretical and Empirical

2 / 33

Outline

■ Matching Markets—a Multi Agent Multi-Armed Bandit formulation

■ Competition—Collision—Resolution of conflicts

■ Dynamic (Non-Stationary) Markets

♣ Algorithm for Non-Stationary Matching Markets

♣ Insights for 2 agents

♣ Analysis: Theoretical and Empirical

2 / 33

Matching Markets

♣ Received a lot of interest in recent years (Liu et.al, 20, Johari et.al, 21,
Sankararaman et. al, 21, Basu et.al, 21)
♣ Motivated by applications in Labor Market (ex. TaskRabbit, Upwork)
♣ College Admissions (classical motivation, Gale and Shapley, 1962)
♣ Matching medical interns/residents Dai and Jordan, 2021
♣ Objective: Match Demand to the Supply side

3 / 33

Matching Markets

♣ Received a lot of interest in recent years (Liu et.al, 20, Johari et.al, 21,
Sankararaman et. al, 21, Basu et.al, 21)
♣ Motivated by applications in Labor Market (ex. TaskRabbit, Upwork)
♣ College Admissions (classical motivation, Gale and Shapley, 1962)
♣ Matching medical interns/residents Dai and Jordan, 2021
♣ Objective: Match Demand to the Supply side

3 / 33

Matching Markets

♣ Received a lot of interest in recent years (Liu et.al, 20, Johari et.al, 21,
Sankararaman et. al, 21, Basu et.al, 21)

♣ Motivated by applications in Labor Market (ex. TaskRabbit, Upwork)
♣ College Admissions (classical motivation, Gale and Shapley, 1962)
♣ Matching medical interns/residents Dai and Jordan, 2021
♣ Objective: Match Demand to the Supply side

3 / 33

Matching Markets

♣ Received a lot of interest in recent years (Liu et.al, 20, Johari et.al, 21,
Sankararaman et. al, 21, Basu et.al, 21)
♣ Motivated by applications in Labor Market (ex. TaskRabbit, Upwork)
♣ College Admissions (classical motivation, Gale and Shapley, 1962)
♣ Matching medical interns/residents Dai and Jordan, 2021
♣ Objective: Match Demand to the Supply side

3 / 33

Matching Markets contd.

♣ Each Agent has a preference over Arms
♣ Each Arm has preference over Agents
♣ If these preferences were known, a simple solution is Gale Shapley
stable matching algorithm.
♣ However, we don’t know these preferences—learn them via successive
interactions between Agents and Arms

4 / 33

Matching Markets contd.

♣ Each Agent has a preference over Arms
♣ Each Arm has preference over Agents

♣ If these preferences were known, a simple solution is Gale Shapley
stable matching algorithm.
♣ However, we don’t know these preferences—learn them via successive
interactions between Agents and Arms

4 / 33

Matching Markets contd.

♣ Each Agent has a preference over Arms
♣ Each Arm has preference over Agents
♣ If these preferences were known, a simple solution is Gale Shapley
stable matching algorithm.
♣ However, we don’t know these preferences—learn them via successive
interactions between Agents and Arms

4 / 33

Model via Bandits framework

♣ Preference modeling via Bandits framework
♣ We consider N agents and K arms

▶ When Agent i pulls arm j–receives a random reward with mean µi,j

▶ Agent i’s preference—ordering of the arm means {µi,1,µi,2, . . . ,µi,k}

▶ Agent i is solving a Multi-Armed Bandit (MAB) problem

♣ Solving multi-agent multi armed Bandit problem is equivalent to
learning preferences
♣ Use tools from bandit literature—Liu et.al, 20, Jagadeesan et. al, 21,
Johari et.al, 21, Sankararaman et. al, 21, Basu et.al, 21

♣ Caveat: There is competition in the system—2 or more agents may go
for one arm—need to resolve collision/conflicts

5 / 33

Model via Bandits framework

♣ Preference modeling via Bandits framework
♣ We consider N agents and K arms

▶ When Agent i pulls arm j–receives a random reward with mean µi,j

▶ Agent i’s preference—ordering of the arm means {µi,1,µi,2, . . . ,µi,k}

▶ Agent i is solving a Multi-Armed Bandit (MAB) problem

♣ Solving multi-agent multi armed Bandit problem is equivalent to
learning preferences
♣ Use tools from bandit literature—Liu et.al, 20, Jagadeesan et. al, 21,
Johari et.al, 21, Sankararaman et. al, 21, Basu et.al, 21

♣ Caveat: There is competition in the system—2 or more agents may go
for one arm—need to resolve collision/conflicts

5 / 33

Model via Bandits framework

♣ Preference modeling via Bandits framework
♣ We consider N agents and K arms

▶ When Agent i pulls arm j–receives a random reward with mean µi,j

▶ Agent i’s preference—ordering of the arm means {µi,1,µi,2, . . . ,µi,k}

▶ Agent i is solving a Multi-Armed Bandit (MAB) problem

♣ Solving multi-agent multi armed Bandit problem is equivalent to
learning preferences
♣ Use tools from bandit literature—Liu et.al, 20, Jagadeesan et. al, 21,
Johari et.al, 21, Sankararaman et. al, 21, Basu et.al, 21

♣ Caveat: There is competition in the system—2 or more agents may go
for one arm—need to resolve collision/conflicts

5 / 33

Model via Bandits framework

♣ Preference modeling via Bandits framework
♣ We consider N agents and K arms

▶ When Agent i pulls arm j–receives a random reward with mean µi,j

▶ Agent i’s preference—ordering of the arm means {µi,1,µi,2, . . . ,µi,k}

▶ Agent i is solving a Multi-Armed Bandit (MAB) problem

♣ Solving multi-agent multi armed Bandit problem is equivalent to
learning preferences
♣ Use tools from bandit literature—Liu et.al, 20, Jagadeesan et. al, 21,
Johari et.al, 21, Sankararaman et. al, 21, Basu et.al, 21

♣ Caveat: There is competition in the system—2 or more agents may go
for one arm—need to resolve collision/conflicts

5 / 33

One sided Learning and Conflict Resolution

♣ Typical Assumption (Liu et.al, 20, Jagadeesan et. al, 21, Dai et. al
’21, Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are known to the arms (right)–through
some common knowledge—one sided learning
◀ Example: College Admissions; Agents are colleges—ranking of colleges
are available
♣ Collision/Competition More than one agents pull same arm–Collision
♣ Reward is given to the Agent with highest rank among the competitors
♣ All other Agents receive 0 reward

6 / 33

One sided Learning and Conflict Resolution

♣ Typical Assumption (Liu et.al, 20, Jagadeesan et. al, 21, Dai et. al
’21, Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are known to the arms (right)–through
some common knowledge—one sided learning

◀ Example: College Admissions; Agents are colleges—ranking of colleges
are available
♣ Collision/Competition More than one agents pull same arm–Collision
♣ Reward is given to the Agent with highest rank among the competitors
♣ All other Agents receive 0 reward

6 / 33

One sided Learning and Conflict Resolution

♣ Typical Assumption (Liu et.al, 20, Jagadeesan et. al, 21, Dai et. al
’21, Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are known to the arms (right)–through
some common knowledge—one sided learning
◀ Example: College Admissions; Agents are colleges—ranking of colleges
are available

♣ Collision/Competition More than one agents pull same arm–Collision
♣ Reward is given to the Agent with highest rank among the competitors
♣ All other Agents receive 0 reward

6 / 33

One sided Learning and Conflict Resolution

♣ Typical Assumption (Liu et.al, 20, Jagadeesan et. al, 21, Dai et. al
’21, Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are known to the arms (right)–through
some common knowledge—one sided learning
◀ Example: College Admissions; Agents are colleges—ranking of colleges
are available
♣ Collision/Competition More than one agents pull same arm–Collision
♣ Reward is given to the Agent with highest rank among the competitors
♣ All other Agents receive 0 reward

6 / 33

Even Simpler model–Serial Dictatorship

♣ Further Simplification (Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are same to all the Arms
◀ Example: College global ranking–same for all applicants
♣ Serial Dictatorship model is a popular in economics (Abdulkadirouglu
and Somez, 1998)
♣ Relaxations to Serial Dictatorship to weaker models is also possible
(Basu et. al, 21)

♣ Under Serial Dictatorship, the matching between Agents and Arms is
unique—provides a reference point to characterize Regret

7 / 33

Even Simpler model–Serial Dictatorship

♣ Further Simplification (Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are same to all the Arms
◀ Example: College global ranking–same for all applicants

♣ Serial Dictatorship model is a popular in economics (Abdulkadirouglu
and Somez, 1998)
♣ Relaxations to Serial Dictatorship to weaker models is also possible
(Basu et. al, 21)

♣ Under Serial Dictatorship, the matching between Agents and Arms is
unique—provides a reference point to characterize Regret

7 / 33

Even Simpler model–Serial Dictatorship

♣ Further Simplification (Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are same to all the Arms
◀ Example: College global ranking–same for all applicants
♣ Serial Dictatorship model is a popular in economics (Abdulkadirouglu
and Somez, 1998)
♣ Relaxations to Serial Dictatorship to weaker models is also possible
(Basu et. al, 21)

♣ Under Serial Dictatorship, the matching between Agents and Arms is
unique—provides a reference point to characterize Regret

7 / 33

Even Simpler model–Serial Dictatorship

♣ Further Simplification (Sankararaman et. al, 21, Basu et.al, 21):
◀ Preferences of Agents (left) are same to all the Arms
◀ Example: College global ranking–same for all applicants
♣ Serial Dictatorship model is a popular in economics (Abdulkadirouglu
and Somez, 1998)
♣ Relaxations to Serial Dictatorship to weaker models is also possible
(Basu et. al, 21)

♣ Under Serial Dictatorship, the matching between Agents and Arms is
unique—provides a reference point to characterize Regret

7 / 33

Regret

♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:
▶ Arm preferred by Agent 1:

ℓ(1)∗ = argmaxℓ∈[K]µ1,ℓ

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j)∗ = argmax
ℓ∈[K]\{ℓ

(1)
∗ ,.,ℓ

(j−1)
∗ }

µj,ℓ

♣ (1, ℓ
(1)
∗), (2, ℓ

(2)
∗), . . . , (N, ℓ

(N)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match
♣ Let L(j) be the arm played by an algorithm A.
♣ Regret of agent j playing A is

Rj =

T∑
t=1

E
[
µ
j,ℓ

(j)
∗

− µj,L(j)(1L(j)matched player j)
]

8 / 33

Regret
♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:
▶ Arm preferred by Agent 1:

ℓ(1)∗ = argmaxℓ∈[K]µ1,ℓ

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j)∗ = argmax
ℓ∈[K]\{ℓ

(1)
∗ ,.,ℓ

(j−1)
∗ }

µj,ℓ

♣ (1, ℓ
(1)
∗), (2, ℓ

(2)
∗), . . . , (N, ℓ

(N)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match
♣ Let L(j) be the arm played by an algorithm A.
♣ Regret of agent j playing A is

Rj =

T∑
t=1

E
[
µ
j,ℓ

(j)
∗

− µj,L(j)(1L(j)matched player j)
]

8 / 33

Regret
♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:
▶ Arm preferred by Agent 1:

ℓ(1)∗ = argmaxℓ∈[K]µ1,ℓ

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j)∗ = argmax
ℓ∈[K]\{ℓ

(1)
∗ ,.,ℓ

(j−1)
∗ }

µj,ℓ

♣ (1, ℓ
(1)
∗), (2, ℓ

(2)
∗), . . . , (N, ℓ

(N)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match
♣ Let L(j) be the arm played by an algorithm A.
♣ Regret of agent j playing A is

Rj =

T∑
t=1

E
[
µ
j,ℓ

(j)
∗

− µj,L(j)(1L(j)matched player j)
]

8 / 33

Regret
♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:
▶ Arm preferred by Agent 1:

ℓ(1)∗ = argmaxℓ∈[K]µ1,ℓ

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j)∗ = argmax
ℓ∈[K]\{ℓ

(1)
∗ ,.,ℓ

(j−1)
∗ }

µj,ℓ

♣ (1, ℓ
(1)
∗), (2, ℓ

(2)
∗), . . . , (N, ℓ

(N)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match
♣ Let L(j) be the arm played by an algorithm A.
♣ Regret of agent j playing A is

Rj =

T∑
t=1

E
[
µ
j,ℓ

(j)
∗

− µj,L(j)(1L(j)matched player j)
]

8 / 33

Regret
♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:
▶ Arm preferred by Agent 1:

ℓ(1)∗ = argmaxℓ∈[K]µ1,ℓ

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j)∗ = argmax
ℓ∈[K]\{ℓ

(1)
∗ ,.,ℓ

(j−1)
∗ }

µj,ℓ

♣ (1, ℓ
(1)
∗), (2, ℓ

(2)
∗), . . . , (N, ℓ

(N)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match

♣ Let L(j) be the arm played by an algorithm A.
♣ Regret of agent j playing A is

Rj =

T∑
t=1

E
[
µ
j,ℓ

(j)
∗

− µj,L(j)(1L(j)matched player j)
]

8 / 33

Regret
♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:
▶ Arm preferred by Agent 1:

ℓ(1)∗ = argmaxℓ∈[K]µ1,ℓ

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j)∗ = argmax
ℓ∈[K]\{ℓ

(1)
∗ ,.,ℓ

(j−1)
∗ }

µj,ℓ

♣ (1, ℓ
(1)
∗), (2, ℓ

(2)
∗), . . . , (N, ℓ

(N)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match
♣ Let L(j) be the arm played by an algorithm A.
♣ Regret of agent j playing A is

Rj =

T∑
t=1

E
[
µ
j,ℓ

(j)
∗

− µj,L(j)(1L(j)matched player j)
]

8 / 33

UCB based algorithms

♣ Assume one sided learning and serial dictatorship
♠ UCB-D3 by Sankararaman et. al 21, AISTATS (few extensions)

♠ Idea: Play UCB in a restrictive set of arms
♠ Avoid the arm preferred/most played by agents raked higher

♠ Propose an epoch based method:

▶ Agents estimate their rank first though collision

▶ In each epoch, estimate the arms played/preferred by agents ranked
higher through collisions

▶ Remove them and play UCB on the restrictive set

♣ With this, regret of O(jK log T) is obtained for j-th ranked agent

9 / 33

UCB based algorithms

♣ Assume one sided learning and serial dictatorship
♠ UCB-D3 by Sankararaman et. al 21, AISTATS (few extensions)

♠ Idea: Play UCB in a restrictive set of arms
♠ Avoid the arm preferred/most played by agents raked higher

♠ Propose an epoch based method:

▶ Agents estimate their rank first though collision

▶ In each epoch, estimate the arms played/preferred by agents ranked
higher through collisions

▶ Remove them and play UCB on the restrictive set

♣ With this, regret of O(jK log T) is obtained for j-th ranked agent

9 / 33

UCB based algorithms

♣ Assume one sided learning and serial dictatorship
♠ UCB-D3 by Sankararaman et. al 21, AISTATS (few extensions)

♠ Idea: Play UCB in a restrictive set of arms
♠ Avoid the arm preferred/most played by agents raked higher

♠ Propose an epoch based method:

▶ Agents estimate their rank first though collision

▶ In each epoch, estimate the arms played/preferred by agents ranked
higher through collisions

▶ Remove them and play UCB on the restrictive set

♣ With this, regret of O(jK log T) is obtained for j-th ranked agent

9 / 33

UCB based algorithms

♣ Assume one sided learning and serial dictatorship
♠ UCB-D3 by Sankararaman et. al 21, AISTATS (few extensions)

♠ Idea: Play UCB in a restrictive set of arms
♠ Avoid the arm preferred/most played by agents raked higher

♠ Propose an epoch based method:

▶ Agents estimate their rank first though collision

▶ In each epoch, estimate the arms played/preferred by agents ranked
higher through collisions

▶ Remove them and play UCB on the restrictive set

♣ With this, regret of O(jK log T) is obtained for j-th ranked agent

9 / 33

Explore-Then-Commit type algorithms

♣ Assume one sided learning
♠ ETGS (Explore-then-Gale-Shapley) by Kong et. al, SODA 23

♠ Idea: Explore and collect samples in a round robin fashion
♠ Construct the LCB and UCB indices
♠ Agent prefers arm ℓ1 over ℓ2 if LCB of arm ℓ1 > UCB of arm ℓ2

♠ Propose an epoch based method:

▶ Agents estimate their preference though LCB and UCB indices

▶ Commits to the most prefered arm

▶ Exponentially growing epoch length so that after some finite epochs,
gets the correct preference

♣ With this, regret of O(K log T) is obtained

10 / 33

Explore-Then-Commit type algorithms

♣ Assume one sided learning
♠ ETGS (Explore-then-Gale-Shapley) by Kong et. al, SODA 23

♠ Idea: Explore and collect samples in a round robin fashion
♠ Construct the LCB and UCB indices

♠ Agent prefers arm ℓ1 over ℓ2 if LCB of arm ℓ1 > UCB of arm ℓ2

♠ Propose an epoch based method:

▶ Agents estimate their preference though LCB and UCB indices

▶ Commits to the most prefered arm

▶ Exponentially growing epoch length so that after some finite epochs,
gets the correct preference

♣ With this, regret of O(K log T) is obtained

10 / 33

Explore-Then-Commit type algorithms

♣ Assume one sided learning
♠ ETGS (Explore-then-Gale-Shapley) by Kong et. al, SODA 23

♠ Idea: Explore and collect samples in a round robin fashion
♠ Construct the LCB and UCB indices
♠ Agent prefers arm ℓ1 over ℓ2 if LCB of arm ℓ1 > UCB of arm ℓ2

♠ Propose an epoch based method:

▶ Agents estimate their preference though LCB and UCB indices

▶ Commits to the most prefered arm

▶ Exponentially growing epoch length so that after some finite epochs,
gets the correct preference

♣ With this, regret of O(K log T) is obtained

10 / 33

Explore-Then-Commit type algorithms

♣ Assume one sided learning
♠ ETGS (Explore-then-Gale-Shapley) by Kong et. al, SODA 23

♠ Idea: Explore and collect samples in a round robin fashion
♠ Construct the LCB and UCB indices
♠ Agent prefers arm ℓ1 over ℓ2 if LCB of arm ℓ1 > UCB of arm ℓ2

♠ Propose an epoch based method:

▶ Agents estimate their preference though LCB and UCB indices

▶ Commits to the most prefered arm

▶ Exponentially growing epoch length so that after some finite epochs,
gets the correct preference

♣ With this, regret of O(K log T) is obtained

10 / 33

Explore-Then-Commit type algorithms

♣ Assume one sided learning
♠ ETGS (Explore-then-Gale-Shapley) by Kong et. al, SODA 23

♠ Idea: Explore and collect samples in a round robin fashion
♠ Construct the LCB and UCB indices
♠ Agent prefers arm ℓ1 over ℓ2 if LCB of arm ℓ1 > UCB of arm ℓ2

♠ Propose an epoch based method:

▶ Agents estimate their preference though LCB and UCB indices

▶ Commits to the most prefered arm

▶ Exponentially growing epoch length so that after some finite epochs,
gets the correct preference

♣ With this, regret of O(K log T) is obtained

10 / 33

Stationary vs. Dynamic Markets

♣ Previous works consider static market, and learn preferences only once
♣ Markets are seldom stationary–preferences continuously evolving

▶ Demand of sanitizers, masks increased during pandemic

▶ Restaurants are busier over weekends

♣ Active area of research in Management sciences and Operations
Research revolve around understanding the equilibrium properties in such
evolving market (Lam et. al 05, Akbarpour et. al 20, Kurino 20, Johari
et. al 21)
♣ In these works—The participants have exact knowledge over their
preferences, and only need to optimize over other agents’ competitive
behavior with future changes

♣ We take a step towards bridging the two aforementioned lines of work

11 / 33

Stationary vs. Dynamic Markets

♣ Previous works consider static market, and learn preferences only once

♣ Markets are seldom stationary–preferences continuously evolving

▶ Demand of sanitizers, masks increased during pandemic

▶ Restaurants are busier over weekends

♣ Active area of research in Management sciences and Operations
Research revolve around understanding the equilibrium properties in such
evolving market (Lam et. al 05, Akbarpour et. al 20, Kurino 20, Johari
et. al 21)
♣ In these works—The participants have exact knowledge over their
preferences, and only need to optimize over other agents’ competitive
behavior with future changes

♣ We take a step towards bridging the two aforementioned lines of work

11 / 33

Stationary vs. Dynamic Markets

♣ Previous works consider static market, and learn preferences only once
♣ Markets are seldom stationary–preferences continuously evolving

▶ Demand of sanitizers, masks increased during pandemic

▶ Restaurants are busier over weekends

♣ Active area of research in Management sciences and Operations
Research revolve around understanding the equilibrium properties in such
evolving market (Lam et. al 05, Akbarpour et. al 20, Kurino 20, Johari
et. al 21)
♣ In these works—The participants have exact knowledge over their
preferences, and only need to optimize over other agents’ competitive
behavior with future changes

♣ We take a step towards bridging the two aforementioned lines of work

11 / 33

Stationary vs. Dynamic Markets

♣ Previous works consider static market, and learn preferences only once
♣ Markets are seldom stationary–preferences continuously evolving

▶ Demand of sanitizers, masks increased during pandemic

▶ Restaurants are busier over weekends

♣ Active area of research in Management sciences and Operations
Research revolve around understanding the equilibrium properties in such
evolving market (Lam et. al 05, Akbarpour et. al 20, Kurino 20, Johari
et. al 21)
♣ In these works—The participants have exact knowledge over their
preferences, and only need to optimize over other agents’ competitive
behavior with future changes

♣ We take a step towards bridging the two aforementioned lines of work

11 / 33

Stationary vs. Dynamic Markets

♣ Previous works consider static market, and learn preferences only once
♣ Markets are seldom stationary–preferences continuously evolving

▶ Demand of sanitizers, masks increased during pandemic

▶ Restaurants are busier over weekends

♣ Active area of research in Management sciences and Operations
Research revolve around understanding the equilibrium properties in such
evolving market (Lam et. al 05, Akbarpour et. al 20, Kurino 20, Johari
et. al 21)
♣ In these works—The participants have exact knowledge over their
preferences, and only need to optimize over other agents’ competitive
behavior with future changes

♣ We take a step towards bridging the two aforementioned lines of work

11 / 33

Non-Stationary Multi-Armed Bandit (MAB)

♣ Well studied in the MAB literature
♣ UCB does not work–Variations: discounted UCB, Window based UCB
Garivier 2008

♣ Environment vary slowly or abruptly (Wei et. al 2018)
♣ Total budget of change (a combination of slowly and abruptly) –
Besbes et. al ,2014

♣ We use smooth varying framework of Wei and Srivastaba ’18,
Krishnamurthy and Gopalan ’21)

♣ |µ.,.,t+1 − µ.,.,t| ⩽ δ for all agent arm pairs
♣ Maximum drift is δ

♣ Useful in cloud computing, financial applications–decisions in seconds,
distribution changes slowly

12 / 33

Non-Stationary Multi-Armed Bandit (MAB)

♣ Well studied in the MAB literature
♣ UCB does not work–Variations: discounted UCB, Window based UCB

Garivier 2008

♣ Environment vary slowly or abruptly (Wei et. al 2018)
♣ Total budget of change (a combination of slowly and abruptly) –
Besbes et. al ,2014

♣ We use smooth varying framework of Wei and Srivastaba ’18,
Krishnamurthy and Gopalan ’21)

♣ |µ.,.,t+1 − µ.,.,t| ⩽ δ for all agent arm pairs
♣ Maximum drift is δ

♣ Useful in cloud computing, financial applications–decisions in seconds,
distribution changes slowly

12 / 33

Non-Stationary Multi-Armed Bandit (MAB)

♣ Well studied in the MAB literature
♣ UCB does not work–Variations: discounted UCB, Window based UCB
Garivier 2008

♣ Environment vary slowly or abruptly (Wei et. al 2018)

♣ Total budget of change (a combination of slowly and abruptly) –
Besbes et. al ,2014

♣ We use smooth varying framework of Wei and Srivastaba ’18,
Krishnamurthy and Gopalan ’21)

♣ |µ.,.,t+1 − µ.,.,t| ⩽ δ for all agent arm pairs
♣ Maximum drift is δ

♣ Useful in cloud computing, financial applications–decisions in seconds,
distribution changes slowly

12 / 33

Non-Stationary Multi-Armed Bandit (MAB)

♣ Well studied in the MAB literature
♣ UCB does not work–Variations: discounted UCB, Window based UCB
Garivier 2008

♣ Environment vary slowly or abruptly (Wei et. al 2018)
♣ Total budget of change (a combination of slowly and abruptly) –
Besbes et. al ,2014

♣ We use smooth varying framework of Wei and Srivastaba ’18,
Krishnamurthy and Gopalan ’21)

♣ |µ.,.,t+1 − µ.,.,t| ⩽ δ for all agent arm pairs
♣ Maximum drift is δ

♣ Useful in cloud computing, financial applications–decisions in seconds,
distribution changes slowly

12 / 33

Non-Stationary Multi-Armed Bandit (MAB)

♣ Well studied in the MAB literature
♣ UCB does not work–Variations: discounted UCB, Window based UCB
Garivier 2008

♣ Environment vary slowly or abruptly (Wei et. al 2018)
♣ Total budget of change (a combination of slowly and abruptly) –
Besbes et. al ,2014

♣ We use smooth varying framework of Wei and Srivastaba ’18,
Krishnamurthy and Gopalan ’21)

♣ |µ.,.,t+1 − µ.,.,t| ⩽ δ for all agent arm pairs
♣ Maximum drift is δ

♣ Useful in cloud computing, financial applications–decisions in seconds,
distribution changes slowly

12 / 33

Smoothly Varying Markets – Regret

♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:

▶ At time t, Arm preferred by Agent 1:

ℓ(1,t)∗ = argmaxℓ∈[K]µ1,ℓ,t

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j,t)∗ = argmax
ℓ∈[K]\{ℓ

(1,t)
∗ ,.,ℓ

(j−1,t)
∗ }

µj,ℓ,t

♣ (1, ℓ
(1,t)
∗), (2, ℓ

(2,t)
∗), . . . , (N, ℓ

(N,t)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match

13 / 33

Smoothly Varying Markets – Regret

♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:

▶ At time t, Arm preferred by Agent 1:

ℓ(1,t)∗ = argmaxℓ∈[K]µ1,ℓ,t

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j,t)∗ = argmax
ℓ∈[K]\{ℓ

(1,t)
∗ ,.,ℓ

(j−1,t)
∗ }

µj,ℓ,t

♣ (1, ℓ
(1,t)
∗), (2, ℓ

(2,t)
∗), . . . , (N, ℓ

(N,t)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match

13 / 33

Smoothly Varying Markets – Regret

♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:

▶ At time t, Arm preferred by Agent 1:

ℓ(1,t)∗ = argmaxℓ∈[K]µ1,ℓ,t

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j,t)∗ = argmax
ℓ∈[K]\{ℓ

(1,t)
∗ ,.,ℓ

(j−1,t)
∗ }

µj,ℓ,t

♣ (1, ℓ
(1,t)
∗), (2, ℓ

(2,t)
∗), . . . , (N, ℓ

(N,t)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match

13 / 33

Smoothly Varying Markets – Regret

♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:

▶ At time t, Arm preferred by Agent 1:

ℓ(1,t)∗ = argmaxℓ∈[K]µ1,ℓ,t

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j,t)∗ = argmax
ℓ∈[K]\{ℓ

(1,t)
∗ ,.,ℓ

(j−1,t)
∗ }

µj,ℓ,t

♣ (1, ℓ
(1,t)
∗), (2, ℓ

(2,t)
∗), . . . , (N, ℓ

(N,t)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match

13 / 33

Smoothly Varying Markets – Regret

♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:

▶ At time t, Arm preferred by Agent 1:

ℓ(1,t)∗ = argmaxℓ∈[K]µ1,ℓ,t

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j,t)∗ = argmax
ℓ∈[K]\{ℓ

(1,t)
∗ ,.,ℓ

(j−1,t)
∗ }

µj,ℓ,t

♣ (1, ℓ
(1,t)
∗), (2, ℓ

(2,t)
∗), . . . , (N, ℓ

(N,t)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match

13 / 33

Smoothly Varying Markets – Regret

♣ Assume one sided learning and serial dictatorship
♣ Wlog, assume Agent j is ranked j

♣ Let’s look at the unique stable match:

▶ At time t, Arm preferred by Agent 1:

ℓ(1,t)∗ = argmaxℓ∈[K]µ1,ℓ,t

▶ Given collision structure—Arm preferred by Agent j is

ℓ(j,t)∗ = argmax
ℓ∈[K]\{ℓ

(1,t)
∗ ,.,ℓ

(j−1,t)
∗ }

µj,ℓ,t

♣ (1, ℓ
(1,t)
∗), (2, ℓ

(2,t)
∗), . . . , (N, ℓ

(N,t)
∗) forms a stable match–unique

♣ Objective: Minimize regret with respect to this unique stable match

13 / 33

Algorithm: Non-stationary Competing Bandits (NSCB)

♣ We use the SNOOZE-IT algorithm of Krishnamurthy et.al’21

♣ Uses standard sliding window based successive Explore and Commit
(similar to Slivkins ’19)

♣ Caveat: We also have competition accross multiple agents in the
markets setup–seamless extension does not work

♣ Forced Exploration and Restrictive Exploitation

◀ Agent 2 will face additional regret. We characterize this regret.

14 / 33

Algorithm: Non-stationary Competing Bandits (NSCB)

♣ We use the SNOOZE-IT algorithm of Krishnamurthy et.al’21

♣ Uses standard sliding window based successive Explore and Commit
(similar to Slivkins ’19)

♣ Caveat: We also have competition accross multiple agents in the
markets setup–seamless extension does not work

♣ Forced Exploration and Restrictive Exploitation

◀ Agent 2 will face additional regret. We characterize this regret.

14 / 33

Algorithm: Non-stationary Competing Bandits (NSCB)

♣ We use the SNOOZE-IT algorithm of Krishnamurthy et.al’21

♣ Uses standard sliding window based successive Explore and Commit
(similar to Slivkins ’19)

♣ Caveat: We also have competition accross multiple agents in the
markets setup–seamless extension does not work

♣ Forced Exploration and Restrictive Exploitation

◀ Agent 2 will face additional regret. We characterize this regret.

14 / 33

Algorithm: Non-stationary Competing Bandits (NSCB)

♣ We use the SNOOZE-IT algorithm of Krishnamurthy et.al’21

♣ Uses standard sliding window based successive Explore and Commit
(similar to Slivkins ’19)

♣ Caveat: We also have competition accross multiple agents in the
markets setup–seamless extension does not work

♣ Forced Exploration and Restrictive Exploitation

◀ Agent 2 will face additional regret. We characterize this regret.

14 / 33

Non-stationary Competing Bandits (NSCB)

♣ Phase I: Rank Estimation

♣ Takes a total of N− 1 time steps

♣ At t = 1, all agents pull arm 1

♣ For t ∈ [2,N− 1], agents who were matched, continues to play the
matched arm

♣ Rest of the agents play arm index t Thanks to the collision structure,

at N− 1 instant, all agents know their own rank

♣ Say N = 2, both agents pull arm 1–Agent 1 gets the reward, Agent 2
does not
♣ Based on this they know their rank

♠ Let us now look at the simplest non-trivial problem with N = 2 agents

15 / 33

Non-stationary Competing Bandits (NSCB)

♣ Phase I: Rank Estimation

♣ Takes a total of N− 1 time steps

♣ At t = 1, all agents pull arm 1

♣ For t ∈ [2,N− 1], agents who were matched, continues to play the
matched arm

♣ Rest of the agents play arm index t Thanks to the collision structure,

at N− 1 instant, all agents know their own rank

♣ Say N = 2, both agents pull arm 1–Agent 1 gets the reward, Agent 2
does not
♣ Based on this they know their rank

♠ Let us now look at the simplest non-trivial problem with N = 2 agents

15 / 33

Non-stationary Competing Bandits (NSCB)

♣ Phase I: Rank Estimation

♣ Takes a total of N− 1 time steps

♣ At t = 1, all agents pull arm 1

♣ For t ∈ [2,N− 1], agents who were matched, continues to play the
matched arm

♣ Rest of the agents play arm index t

Thanks to the collision structure,

at N− 1 instant, all agents know their own rank

♣ Say N = 2, both agents pull arm 1–Agent 1 gets the reward, Agent 2
does not
♣ Based on this they know their rank

♠ Let us now look at the simplest non-trivial problem with N = 2 agents

15 / 33

Non-stationary Competing Bandits (NSCB)

♣ Phase I: Rank Estimation

♣ Takes a total of N− 1 time steps

♣ At t = 1, all agents pull arm 1

♣ For t ∈ [2,N− 1], agents who were matched, continues to play the
matched arm

♣ Rest of the agents play arm index t Thanks to the collision structure,

at N− 1 instant, all agents know their own rank

♣ Say N = 2, both agents pull arm 1–Agent 1 gets the reward, Agent 2
does not
♣ Based on this they know their rank

♠ Let us now look at the simplest non-trivial problem with N = 2 agents

15 / 33

Non-stationary Competing Bandits (NSCB)

♣ Phase I: Rank Estimation

♣ Takes a total of N− 1 time steps

♣ At t = 1, all agents pull arm 1

♣ For t ∈ [2,N− 1], agents who were matched, continues to play the
matched arm

♣ Rest of the agents play arm index t Thanks to the collision structure,

at N− 1 instant, all agents know their own rank

♣ Say N = 2, both agents pull arm 1–Agent 1 gets the reward, Agent 2
does not
♣ Based on this they know their rank

♠ Let us now look at the simplest non-trivial problem with N = 2 agents

15 / 33

Non-stationary Competing Bandits (NSCB)

♣ Phase I: Rank Estimation

♣ Takes a total of N− 1 time steps

♣ At t = 1, all agents pull arm 1

♣ For t ∈ [2,N− 1], agents who were matched, continues to play the
matched arm

♣ Rest of the agents play arm index t Thanks to the collision structure,

at N− 1 instant, all agents know their own rank

♣ Say N = 2, both agents pull arm 1–Agent 1 gets the reward, Agent 2
does not
♣ Based on this they know their rank

♠ Let us now look at the simplest non-trivial problem with N = 2 agents

15 / 33

Non-stationary Competing Bandits (NSCB) for Agent 1

♣ Agent 1–highest ranked, faces no collision

♣ Uses standard sliding window based SNOOZE-IT algorithm
(Krishnamurthy et.al ’21)

♣ Since arm means are changing, best arm is changing, so Agent 1
Explore and Commits successively over time.

◀ No market aspect, no competition

16 / 33

Non-stationary Competing Bandits (NSCB) for Agent 1

♣ Agent 1–highest ranked, faces no collision

♣ Uses standard sliding window based SNOOZE-IT algorithm
(Krishnamurthy et.al ’21)

♣ Since arm means are changing, best arm is changing, so Agent 1
Explore and Commits successively over time.

◀ No market aspect, no competition

16 / 33

Non-stationary Competing Bandits (NSCB) for Agent 1

♣ Agent 1–highest ranked, faces no collision

♣ Uses standard sliding window based SNOOZE-IT algorithm
(Krishnamurthy et.al ’21)

♣ Since arm means are changing, best arm is changing, so Agent 1
Explore and Commits successively over time.

◀ No market aspect, no competition

16 / 33

NSCB for Agent 1 contd.
♣ Epoch based–s1, s2, .. denote starting of epoch
♣ In 1 epoch: Round robbin to find an optimal arm followed by
exploiting that arm
♣ More formally Agent 1 performs the following test:

♣ Let µ̂a,t(w̃) denote the empirical reward mean of arm a at time t,
based on its last w̃ pulls.

Definition
(Lambda-Opt (λ̃,A)) At time t, an arm a is said to be Lambda-Opt
(λ̃,A) with respect to set A, if there exists λ̃ ∈ (0, 1) such that
µ̂a,t(w̃) > µ̂b,t(w̃) + 4r(w̃) − (k− 1)δ, for all b ∈ A \ {a}, where

w̃ = c1 logT

λ̃2 , and r(w̃) =
√

2 logT
w̃

.

♣ Once an arm a is found
♠ Exploit arm a for 8

δ

√
k logT
t−si

− 2(k− 1) for the i-th epoch
◀ Exploit period such that the arm remains optimal

17 / 33

NSCB for Agent 1 contd.
♣ Epoch based–s1, s2, .. denote starting of epoch
♣ In 1 epoch: Round robbin to find an optimal arm followed by
exploiting that arm
♣ More formally Agent 1 performs the following test:
♣ Let µ̂a,t(w̃) denote the empirical reward mean of arm a at time t,
based on its last w̃ pulls.

Definition
(Lambda-Opt (λ̃,A)) At time t, an arm a is said to be Lambda-Opt
(λ̃,A) with respect to set A, if there exists λ̃ ∈ (0, 1) such that
µ̂a,t(w̃) > µ̂b,t(w̃) + 4r(w̃) − (k− 1)δ, for all b ∈ A \ {a}, where

w̃ = c1 logT

λ̃2 , and r(w̃) =
√

2 logT
w̃

.

♣ Once an arm a is found
♠ Exploit arm a for 8

δ

√
k logT
t−si

− 2(k− 1) for the i-th epoch
◀ Exploit period such that the arm remains optimal

17 / 33

NSCB for Agent 1 contd.
♣ Epoch based–s1, s2, .. denote starting of epoch
♣ In 1 epoch: Round robbin to find an optimal arm followed by
exploiting that arm
♣ More formally Agent 1 performs the following test:
♣ Let µ̂a,t(w̃) denote the empirical reward mean of arm a at time t,
based on its last w̃ pulls.

Definition
(Lambda-Opt (λ̃,A)) At time t, an arm a is said to be Lambda-Opt
(λ̃,A) with respect to set A, if there exists λ̃ ∈ (0, 1) such that
µ̂a,t(w̃) > µ̂b,t(w̃) + 4r(w̃) − (k− 1)δ, for all b ∈ A \ {a}, where

w̃ = c1 logT

λ̃2 , and r(w̃) =
√

2 logT
w̃

.

♣ Once an arm a is found
♠ Exploit arm a for 8

δ

√
k logT
t−si

− 2(k− 1) for the i-th epoch
◀ Exploit period such that the arm remains optimal

17 / 33

NSCB for Agent 1 contd.
♣ Epoch based–s1, s2, .. denote starting of epoch
♣ In 1 epoch: Round robbin to find an optimal arm followed by
exploiting that arm
♣ More formally Agent 1 performs the following test:
♣ Let µ̂a,t(w̃) denote the empirical reward mean of arm a at time t,
based on its last w̃ pulls.

Definition
(Lambda-Opt (λ̃,A)) At time t, an arm a is said to be Lambda-Opt
(λ̃,A) with respect to set A, if there exists λ̃ ∈ (0, 1) such that
µ̂a,t(w̃) > µ̂b,t(w̃) + 4r(w̃) − (k− 1)δ, for all b ∈ A \ {a}, where

w̃ = c1 logT

λ̃2 , and r(w̃) =
√

2 logT
w̃

.

♣ Once an arm a is found
♠ Exploit arm a for 8

δ

√
k logT
t−si

− 2(k− 1) for the i-th epoch

◀ Exploit period such that the arm remains optimal

17 / 33

NSCB for Agent 1 contd.
♣ Epoch based–s1, s2, .. denote starting of epoch
♣ In 1 epoch: Round robbin to find an optimal arm followed by
exploiting that arm
♣ More formally Agent 1 performs the following test:
♣ Let µ̂a,t(w̃) denote the empirical reward mean of arm a at time t,
based on its last w̃ pulls.

Definition
(Lambda-Opt (λ̃,A)) At time t, an arm a is said to be Lambda-Opt
(λ̃,A) with respect to set A, if there exists λ̃ ∈ (0, 1) such that
µ̂a,t(w̃) > µ̂b,t(w̃) + 4r(w̃) − (k− 1)δ, for all b ∈ A \ {a}, where

w̃ = c1 logT

λ̃2 , and r(w̃) =
√

2 logT
w̃

.

♣ Once an arm a is found
♠ Exploit arm a for 8

δ

√
k logT
t−si

− 2(k− 1) for the i-th epoch
◀ Exploit period such that the arm remains optimal

17 / 33

Blackboard Communication Model

♣ We assume that agents can write limited information on a
black-board, which other agents can see

♣ This is quite common is Distributed Optimization (Wainwright et. al)
♣ Mode of communication across various agents
♣ In Sankararaman et.al ’21, this is achieved through structured collision
♣ In Kong et. al ’23, equivalent model is assumed through broadcasting

♣ Since we do not allow collision, we let the agents use the blackboard
to communicate
♣ Note that this is still a decentralized system, at each time, we allow
one agent to update

♣ After getting the optimal arm, Agent 1 updates the black-board
♣ Agent 1 writes the optimal arm index and the exploit time

♠ We later remove the blackboard

18 / 33

Blackboard Communication Model

♣ We assume that agents can write limited information on a
black-board, which other agents can see
♣ This is quite common is Distributed Optimization (Wainwright et. al)
♣ Mode of communication across various agents

♣ In Sankararaman et.al ’21, this is achieved through structured collision
♣ In Kong et. al ’23, equivalent model is assumed through broadcasting

♣ Since we do not allow collision, we let the agents use the blackboard
to communicate
♣ Note that this is still a decentralized system, at each time, we allow
one agent to update

♣ After getting the optimal arm, Agent 1 updates the black-board
♣ Agent 1 writes the optimal arm index and the exploit time

♠ We later remove the blackboard

18 / 33

Blackboard Communication Model

♣ We assume that agents can write limited information on a
black-board, which other agents can see
♣ This is quite common is Distributed Optimization (Wainwright et. al)
♣ Mode of communication across various agents
♣ In Sankararaman et.al ’21, this is achieved through structured collision

♣ In Kong et. al ’23, equivalent model is assumed through broadcasting

♣ Since we do not allow collision, we let the agents use the blackboard
to communicate
♣ Note that this is still a decentralized system, at each time, we allow
one agent to update

♣ After getting the optimal arm, Agent 1 updates the black-board
♣ Agent 1 writes the optimal arm index and the exploit time

♠ We later remove the blackboard

18 / 33

Blackboard Communication Model

♣ We assume that agents can write limited information on a
black-board, which other agents can see
♣ This is quite common is Distributed Optimization (Wainwright et. al)
♣ Mode of communication across various agents
♣ In Sankararaman et.al ’21, this is achieved through structured collision
♣ In Kong et. al ’23, equivalent model is assumed through broadcasting

♣ Since we do not allow collision, we let the agents use the blackboard
to communicate
♣ Note that this is still a decentralized system, at each time, we allow
one agent to update

♣ After getting the optimal arm, Agent 1 updates the black-board
♣ Agent 1 writes the optimal arm index and the exploit time

♠ We later remove the blackboard

18 / 33

Blackboard Communication Model

♣ We assume that agents can write limited information on a
black-board, which other agents can see
♣ This is quite common is Distributed Optimization (Wainwright et. al)
♣ Mode of communication across various agents
♣ In Sankararaman et.al ’21, this is achieved through structured collision
♣ In Kong et. al ’23, equivalent model is assumed through broadcasting

♣ Since we do not allow collision, we let the agents use the blackboard
to communicate
♣ Note that this is still a decentralized system, at each time, we allow
one agent to update

♣ After getting the optimal arm, Agent 1 updates the black-board
♣ Agent 1 writes the optimal arm index and the exploit time

♠ We later remove the blackboard

18 / 33

Blackboard Communication Model

♣ We assume that agents can write limited information on a
black-board, which other agents can see
♣ This is quite common is Distributed Optimization (Wainwright et. al)
♣ Mode of communication across various agents
♣ In Sankararaman et.al ’21, this is achieved through structured collision
♣ In Kong et. al ’23, equivalent model is assumed through broadcasting

♣ Since we do not allow collision, we let the agents use the blackboard
to communicate
♣ Note that this is still a decentralized system, at each time, we allow
one agent to update

♣ After getting the optimal arm, Agent 1 updates the black-board
♣ Agent 1 writes the optimal arm index and the exploit time

♠ We later remove the blackboard

18 / 33

Blackboard Communication Model

♣ We assume that agents can write limited information on a
black-board, which other agents can see
♣ This is quite common is Distributed Optimization (Wainwright et. al)
♣ Mode of communication across various agents
♣ In Sankararaman et.al ’21, this is achieved through structured collision
♣ In Kong et. al ’23, equivalent model is assumed through broadcasting

♣ Since we do not allow collision, we let the agents use the blackboard
to communicate
♣ Note that this is still a decentralized system, at each time, we allow
one agent to update

♣ After getting the optimal arm, Agent 1 updates the black-board
♣ Agent 1 writes the optimal arm index and the exploit time

♠ We later remove the blackboard

18 / 33

NSCB for Agent 2
♣ Borns out the competitive nature of the market
♣ Agent 2–avoids collision; otherwise get 0 reward
♣ Let us look at different scenarios of Agent 2

♣ (Domination 1) Restricted Exploration
♣ (Domination 2) Commitment to a dominated set of arms

19 / 33

NSCB for Agent 2
♣ Borns out the competitive nature of the market
♣ Agent 2–avoids collision; otherwise get 0 reward
♣ Let us look at different scenarios of Agent 2

♣ (Domination 1) Restricted Exploration
♣ (Domination 2) Commitment to a dominated set of arms

19 / 33

NSCB for Agent 2
♣ Borns out the competitive nature of the market
♣ Agent 2–avoids collision; otherwise get 0 reward
♣ Let us look at different scenarios of Agent 2

♣ (Domination 1) Restricted Exploration
♣ (Domination 2) Commitment to a dominated set of arms

19 / 33

NSCB for Agent 2 contd.

♣ Let us look at different scenarios of Agent 2

♣ (Domination 3) Forced Exploration
♣ (Domination 4) Restricted Exploitation

20 / 33

NSCB for Agent 2 contd.

♣ Let us look at different scenarios of Agent 2

♣ (Domination 3) Forced Exploration
♣ (Domination 4) Restricted Exploitation

20 / 33

NSCB for Agent 2 contd.

♣ Let us look at different scenarios of Agent 2

♣ (Domination 3) Forced Exploration
♣ (Domination 4) Restricted Exploitation

20 / 33

NSCB for Agent 2 contd.
♣ Let us summarize the actions of Agent 2

21 / 33

NSCB for Agent 2 contd.
♣ Let us summarize the actions of Agent 2

21 / 33

Problem Complexity–Dynamic Gap

♣ Dynamic gap for agent r determines how complex the problem is
♣ Average gap between the pairwise arm-means over a window

Definition
For C ⊆ [k], the dynamic gap of Agent r on a dominated set C as,

λCt [r] = max
λ∈[0,1]

{
min

a,b∈[k]\C
a̸=b

1

w(λ)
|

t∑
t′=s

µr,a,t′ − µr,b,t′ | ⩾ λ

}
,

and if such a λ does not exist, we set λCt [r] = c1

√
logT
t

. Here,

s = t−w(λ) + 1, and w(λ) = c0(k−|C|) logT
λ2 .

♣ No superscript when C = ϕ

♣ When δ = 0, reduced to the usual gap in MAB
♣ Generalization of the standard gap

22 / 33

Problem Complexity–Dynamic Gap

♣ Dynamic gap for agent r determines how complex the problem is
♣ Average gap between the pairwise arm-means over a window

Definition
For C ⊆ [k], the dynamic gap of Agent r on a dominated set C as,

λCt [r] = max
λ∈[0,1]

{
min

a,b∈[k]\C
a̸=b

1

w(λ)
|

t∑
t′=s

µr,a,t′ − µr,b,t′ | ⩾ λ

}
,

and if such a λ does not exist, we set λCt [r] = c1

√
logT
t

. Here,

s = t−w(λ) + 1, and w(λ) = c0(k−|C|) logT
λ2 .

♣ No superscript when C = ϕ

♣ When δ = 0, reduced to the usual gap in MAB
♣ Generalization of the standard gap

22 / 33

Problem Complexity–Dynamic Gap

♣ Dynamic gap for agent r determines how complex the problem is
♣ Average gap between the pairwise arm-means over a window

Definition
For C ⊆ [k], the dynamic gap of Agent r on a dominated set C as,

λCt [r] = max
λ∈[0,1]

{
min

a,b∈[k]\C
a̸=b

1

w(λ)
|

t∑
t′=s

µr,a,t′ − µr,b,t′ | ⩾ λ

}
,

and if such a λ does not exist, we set λCt [r] = c1

√
logT
t

. Here,

s = t−w(λ) + 1, and w(λ) = c0(k−|C|) logT
λ2 .

♣ No superscript when C = ϕ

♣ When δ = 0, reduced to the usual gap in MAB
♣ Generalization of the standard gap

22 / 33

Regret Guarantee

♣ For Agent 1, regret of successive ETC
♣ For Agent 2, account for forced exploration and restrictive exploitation

■ Theorem: Suppose we run NSCB with 2 Agents upto horizon T .
Then the expected regret for Agent 1 is

R1 ≲
m∑
l=1

1

λmin,l[1]
k log T

and for Agent 2 is

R2 ≲
m∑
l=1

[(
1

λmin,l[2]
+

1

(λmin,l[1])2
+

1

mina λ
{a}
min,l[2]

)
k log T

]

♣ T is divided into m blocks with length δ−2/3k1/3 log1/3 T

♣ λmin,l[r] = mint∈l−th block λt[r], λ
{a}
min,l[r] = mint∈l−th block λ

{a}
t [r]

23 / 33

Regret Guarantee

♣ For Agent 1, regret of successive ETC
♣ For Agent 2, account for forced exploration and restrictive exploitation

■ Theorem: Suppose we run NSCB with 2 Agents upto horizon T .
Then the expected regret for Agent 1 is

R1 ≲
m∑
l=1

1

λmin,l[1]
k log T

and for Agent 2 is

R2 ≲
m∑
l=1

[(
1

λmin,l[2]
+

1

(λmin,l[1])2
+

1

mina λ
{a}
min,l[2]

)
k log T

]

♣ T is divided into m blocks with length δ−2/3k1/3 log1/3 T

♣ λmin,l[r] = mint∈l−th block λt[r], λ
{a}
min,l[r] = mint∈l−th block λ

{a}
t [r]

23 / 33

Regret Guarantee

♣ For Agent 1, regret of successive ETC
♣ For Agent 2, account for forced exploration and restrictive exploitation

■ Theorem: Suppose we run NSCB with 2 Agents upto horizon T .
Then the expected regret for Agent 1 is

R1 ≲
m∑
l=1

1

λmin,l[1]
k log T

and for Agent 2 is

R2 ≲
m∑
l=1

[(
1

λmin,l[2]
+

1

(λmin,l[1])2
+

1

mina λ
{a}
min,l[2]

)
k log T

]

♣ T is divided into m blocks with length δ−2/3k1/3 log1/3 T

♣ λmin,l[r] = mint∈l−th block λt[r], λ
{a}
min,l[r] = mint∈l−th block λ

{a}
t [r]

23 / 33

Discussion

♣ For Agent 1, regret matches SNOOZE-IT
♣ Depends on the dynamic gap

♣ For Agent 2, we have 3 terms:

▶ First term: Comes from Exploration-ALL phase

▶ Second Term: Forced Exploration and Restrictive
Exploitation–depends on the dynamic gap of Agent 1

▶ Third Term: Comes from Restrictive exploration (Explore-j) phase,
where Agent 1 is committed to arm j

♣ Regret matches that of UCB-D3 in stationary setup by putting δ = 0.
We get a regret of O(1

Gap2 k log T)

24 / 33

Discussion

♣ For Agent 1, regret matches SNOOZE-IT
♣ Depends on the dynamic gap

♣ For Agent 2, we have 3 terms:

▶ First term: Comes from Exploration-ALL phase

▶ Second Term: Forced Exploration and Restrictive
Exploitation–depends on the dynamic gap of Agent 1

▶ Third Term: Comes from Restrictive exploration (Explore-j) phase,
where Agent 1 is committed to arm j

♣ Regret matches that of UCB-D3 in stationary setup by putting δ = 0.
We get a regret of O(1

Gap2 k log T)

24 / 33

Discussion

♣ For Agent 1, regret matches SNOOZE-IT
♣ Depends on the dynamic gap

♣ For Agent 2, we have 3 terms:

▶ First term: Comes from Exploration-ALL phase

▶ Second Term: Forced Exploration and Restrictive
Exploitation–depends on the dynamic gap of Agent 1

▶ Third Term: Comes from Restrictive exploration (Explore-j) phase,
where Agent 1 is committed to arm j

♣ Regret matches that of UCB-D3 in stationary setup by putting δ = 0.
We get a regret of O(1

Gap2 k log T)

24 / 33

Discussion

♣ For Agent 1, regret matches SNOOZE-IT
♣ Depends on the dynamic gap

♣ For Agent 2, we have 3 terms:

▶ First term: Comes from Exploration-ALL phase

▶ Second Term: Forced Exploration and Restrictive
Exploitation–depends on the dynamic gap of Agent 1

▶ Third Term: Comes from Restrictive exploration (Explore-j) phase,
where Agent 1 is committed to arm j

♣ Regret matches that of UCB-D3 in stationary setup by putting δ = 0.
We get a regret of O(1

Gap2 k log T)

24 / 33

Discussion

♣ For Agent 1, regret matches SNOOZE-IT
♣ Depends on the dynamic gap

♣ For Agent 2, we have 3 terms:

▶ First term: Comes from Exploration-ALL phase

▶ Second Term: Forced Exploration and Restrictive
Exploitation–depends on the dynamic gap of Agent 1

▶ Third Term: Comes from Restrictive exploration (Explore-j) phase,
where Agent 1 is committed to arm j

♣ Regret matches that of UCB-D3 in stationary setup by putting δ = 0.
We get a regret of O(1

Gap2 k log T)

24 / 33

Discussion

♣ For Agent 1, regret matches SNOOZE-IT
♣ Depends on the dynamic gap

♣ For Agent 2, we have 3 terms:

▶ First term: Comes from Exploration-ALL phase

▶ Second Term: Forced Exploration and Restrictive
Exploitation–depends on the dynamic gap of Agent 1

▶ Third Term: Comes from Restrictive exploration (Explore-j) phase,
where Agent 1 is committed to arm j

♣ Regret matches that of UCB-D3 in stationary setup by putting δ = 0.
We get a regret of O(1

Gap2 k log T)

24 / 33

NSCB for N Agents

♣ At time t, Agent r looks at the blackboard and constructs dominated
set Ct(r): the set of committed arms by agents ranked 1, 2, . . . , r− 1

♣ Based on Ct(r), Agent will either Explore-Ct(r) or Exploit

♣ Agent r gets to commit on an arm [k] Ct(r) only if all the higher
ranked agents have committed, i.e., |Ct(r)| = r− 1

♣ Also, Agent r ends faces restricted exploitation if anyone of agents
{1, . . . , r− 1} ends their exploitation.

♣ When Agent r commits to an arm, it updates the blackboard by the
arm index and the committed period

25 / 33

NSCB for N Agents

♣ At time t, Agent r looks at the blackboard and constructs dominated
set Ct(r): the set of committed arms by agents ranked 1, 2, . . . , r− 1

♣ Based on Ct(r), Agent will either Explore-Ct(r) or Exploit

♣ Agent r gets to commit on an arm [k] Ct(r) only if all the higher
ranked agents have committed, i.e., |Ct(r)| = r− 1

♣ Also, Agent r ends faces restricted exploitation if anyone of agents
{1, . . . , r− 1} ends their exploitation.

♣ When Agent r commits to an arm, it updates the blackboard by the
arm index and the committed period

25 / 33

NSCB for N Agents

♣ At time t, Agent r looks at the blackboard and constructs dominated
set Ct(r): the set of committed arms by agents ranked 1, 2, . . . , r− 1

♣ Based on Ct(r), Agent will either Explore-Ct(r) or Exploit

♣ Agent r gets to commit on an arm [k] Ct(r) only if all the higher
ranked agents have committed, i.e., |Ct(r)| = r− 1

♣ Also, Agent r ends faces restricted exploitation if anyone of agents
{1, . . . , r− 1} ends their exploitation.

♣ When Agent r commits to an arm, it updates the blackboard by the
arm index and the committed period

25 / 33

NSCB for N Agents

♣ At time t, Agent r looks at the blackboard and constructs dominated
set Ct(r): the set of committed arms by agents ranked 1, 2, . . . , r− 1

♣ Based on Ct(r), Agent will either Explore-Ct(r) or Exploit

♣ Agent r gets to commit on an arm [k] Ct(r) only if all the higher
ranked agents have committed, i.e., |Ct(r)| = r− 1

♣ Also, Agent r ends faces restricted exploitation if anyone of agents
{1, . . . , r− 1} ends their exploitation.

♣ When Agent r commits to an arm, it updates the blackboard by the
arm index and the committed period

25 / 33

NSCB for N Agents

♣ At time t, Agent r looks at the blackboard and constructs dominated
set Ct(r): the set of committed arms by agents ranked 1, 2, . . . , r− 1

♣ Based on Ct(r), Agent will either Explore-Ct(r) or Exploit

♣ Agent r gets to commit on an arm [k] Ct(r) only if all the higher
ranked agents have committed, i.e., |Ct(r)| = r− 1

♣ Also, Agent r ends faces restricted exploitation if anyone of agents
{1, . . . , r− 1} ends their exploitation.

♣ When Agent r commits to an arm, it updates the blackboard by the
arm index and the committed period

25 / 33

NSCB for N Agents

♣ At time t, Agent r looks at the blackboard and constructs dominated
set Ct(r): the set of committed arms by agents ranked 1, 2, . . . , r− 1

♣ Based on Ct(r), Agent will either Explore-Ct(r) or Exploit

♣ Agent r gets to commit on an arm [k] Ct(r) only if all the higher
ranked agents have committed, i.e., |Ct(r)| = r− 1

♣ Also, Agent r ends faces restricted exploitation if anyone of agents
{1, . . . , r− 1} ends their exploitation.

♣ When Agent r commits to an arm, it updates the blackboard by the
arm index and the committed period

25 / 33

NSCB for N Agents
♣ Let us summarize the actions of Agent r

26 / 33

NSCB for N Agents
♣ Let us summarize the actions of Agent r

26 / 33

NSCB for N Agents

♣ For Agent r–look at the behavior of r− 1-th Agent

♣ Uses inductive structure induced by the serial dictatorship framework

■ Theorem: Suppose we run NSCB with N Agents upto horizon T .
Then the expected regret for Agent r is

Rr ≲
∑

phases

[(
1

Gap[r]
+

1

Gap2[r− 1]

)
k log T

]

♣ Agent r is dominated by Agents 1, . . . , r− 1–captured in gap def.
♣ Regret of Agent r depends on all the agents 1, . . . , r− 1

♣ Similar to the 2 Agent case, the first term comes from Exploring all
arms, and the second term comes from forced exploration and restricted
exploitation.

27 / 33

NSCB for N Agents

♣ For Agent r–look at the behavior of r− 1-th Agent

♣ Uses inductive structure induced by the serial dictatorship framework

■ Theorem: Suppose we run NSCB with N Agents upto horizon T .
Then the expected regret for Agent r is

Rr ≲
∑

phases

[(
1

Gap[r]
+

1

Gap2[r− 1]

)
k log T

]

♣ Agent r is dominated by Agents 1, . . . , r− 1–captured in gap def.
♣ Regret of Agent r depends on all the agents 1, . . . , r− 1

♣ Similar to the 2 Agent case, the first term comes from Exploring all
arms, and the second term comes from forced exploration and restricted
exploitation.

27 / 33

NSCB for N Agents

♣ For Agent r–look at the behavior of r− 1-th Agent

♣ Uses inductive structure induced by the serial dictatorship framework

■ Theorem: Suppose we run NSCB with N Agents upto horizon T .
Then the expected regret for Agent r is

Rr ≲
∑

phases

[(
1

Gap[r]
+

1

Gap2[r− 1]

)
k log T

]

♣ Agent r is dominated by Agents 1, . . . , r− 1–captured in gap def.
♣ Regret of Agent r depends on all the agents 1, . . . , r− 1

♣ Similar to the 2 Agent case, the first term comes from Exploring all
arms, and the second term comes from forced exploration and restricted
exploitation.

27 / 33

Learning without Blackboard; N = 2

♣ With blackboard, Agent 2 knows whether Agent 1 is exploring or
committed to a particular arm

♣ Agent 2 maintains a latent variable Qt ∈ {Explore,Exploit}:
indicates action of Agent 1

♣ If Agent 2 faces collision on arm j then either

▶ (a) Agent 1 has ended exploration and committed on arm j

▶ (b) Agent 1 has ended exploitation and is exploring

♣ After a collision Agent 2 looks at Qt−1

▶ If Qt−1 = Explore, (a) has occurred

▶ If Qt−1 = Exploit, (b) has occurred

♣ Toggling Qt is sufficient to get the information broadcasted by the
blackboard
♣ Same idea can be extended to the N Agent setup

28 / 33

Learning without Blackboard; N = 2

♣ With blackboard, Agent 2 knows whether Agent 1 is exploring or
committed to a particular arm

♣ Agent 2 maintains a latent variable Qt ∈ {Explore,Exploit}:
indicates action of Agent 1

♣ If Agent 2 faces collision on arm j then either

▶ (a) Agent 1 has ended exploration and committed on arm j

▶ (b) Agent 1 has ended exploitation and is exploring

♣ After a collision Agent 2 looks at Qt−1

▶ If Qt−1 = Explore, (a) has occurred

▶ If Qt−1 = Exploit, (b) has occurred

♣ Toggling Qt is sufficient to get the information broadcasted by the
blackboard
♣ Same idea can be extended to the N Agent setup

28 / 33

Learning without Blackboard; N = 2

♣ With blackboard, Agent 2 knows whether Agent 1 is exploring or
committed to a particular arm

♣ Agent 2 maintains a latent variable Qt ∈ {Explore,Exploit}:
indicates action of Agent 1

♣ If Agent 2 faces collision on arm j then either

▶ (a) Agent 1 has ended exploration and committed on arm j

▶ (b) Agent 1 has ended exploitation and is exploring

♣ After a collision Agent 2 looks at Qt−1

▶ If Qt−1 = Explore, (a) has occurred

▶ If Qt−1 = Exploit, (b) has occurred

♣ Toggling Qt is sufficient to get the information broadcasted by the
blackboard
♣ Same idea can be extended to the N Agent setup

28 / 33

Learning without Blackboard; N = 2

♣ With blackboard, Agent 2 knows whether Agent 1 is exploring or
committed to a particular arm

♣ Agent 2 maintains a latent variable Qt ∈ {Explore,Exploit}:
indicates action of Agent 1

♣ If Agent 2 faces collision on arm j then either

▶ (a) Agent 1 has ended exploration and committed on arm j

▶ (b) Agent 1 has ended exploitation and is exploring

♣ After a collision Agent 2 looks at Qt−1

▶ If Qt−1 = Explore, (a) has occurred

▶ If Qt−1 = Exploit, (b) has occurred

♣ Toggling Qt is sufficient to get the information broadcasted by the
blackboard
♣ Same idea can be extended to the N Agent setup

28 / 33

Learning without Blackboard; N = 2

♣ With blackboard, Agent 2 knows whether Agent 1 is exploring or
committed to a particular arm

♣ Agent 2 maintains a latent variable Qt ∈ {Explore,Exploit}:
indicates action of Agent 1

♣ If Agent 2 faces collision on arm j then either

▶ (a) Agent 1 has ended exploration and committed on arm j

▶ (b) Agent 1 has ended exploitation and is exploring

♣ After a collision Agent 2 looks at Qt−1

▶ If Qt−1 = Explore, (a) has occurred

▶ If Qt−1 = Exploit, (b) has occurred

♣ Toggling Qt is sufficient to get the information broadcasted by the
blackboard

♣ Same idea can be extended to the N Agent setup

28 / 33

Learning without Blackboard; N = 2

♣ With blackboard, Agent 2 knows whether Agent 1 is exploring or
committed to a particular arm

♣ Agent 2 maintains a latent variable Qt ∈ {Explore,Exploit}:
indicates action of Agent 1

♣ If Agent 2 faces collision on arm j then either

▶ (a) Agent 1 has ended exploration and committed on arm j

▶ (b) Agent 1 has ended exploitation and is exploring

♣ After a collision Agent 2 looks at Qt−1

▶ If Qt−1 = Explore, (a) has occurred

▶ If Qt−1 = Exploit, (b) has occurred

♣ Toggling Qt is sufficient to get the information broadcasted by the
blackboard
♣ Same idea can be extended to the N Agent setup

28 / 33

Simulations
♣ Consider 3 Agents N = 3, 4 Arms K = 4

♣ Compare with Dominated UCB of Sankararaman et. al’21

♣ Dominated UCB is for static market–hence large regret
29 / 33

Open Problems

♣ Markets and Bandits framework has several open problems

♣ We only consider smooth changes with known δ, what about abrupt
change or total budgeted change?

♣ Beyond Serial Dictatorship?

♣ All works in this framework consider one sided learning to resolve
conflict—the two sided learning problem in decentralized framework is
still open
♣ Recent Work: Two-Sided Bandit Learning in Fully-Decentralized
Matching Markets; Tejas Pagare, Avishek Ghosh, 2023 (short version
ICML 2023 Workshop on Preference Learning, Full version under review)

♣ Spurious Markets: Handling adversaries amidst competition?
♣ Structured Markets: Linear/Contextual Bandits?

30 / 33

Open Problems

♣ Markets and Bandits framework has several open problems

♣ We only consider smooth changes with known δ, what about abrupt
change or total budgeted change?

♣ Beyond Serial Dictatorship?
♣ All works in this framework consider one sided learning to resolve
conflict—the two sided learning problem in decentralized framework is
still open
♣ Recent Work: Two-Sided Bandit Learning in Fully-Decentralized
Matching Markets; Tejas Pagare, Avishek Ghosh, 2023 (short version
ICML 2023 Workshop on Preference Learning, Full version under review)

♣ Spurious Markets: Handling adversaries amidst competition?
♣ Structured Markets: Linear/Contextual Bandits?

30 / 33

Open Problems

♣ Markets and Bandits framework has several open problems

♣ We only consider smooth changes with known δ, what about abrupt
change or total budgeted change?

♣ Beyond Serial Dictatorship?
♣ All works in this framework consider one sided learning to resolve
conflict—the two sided learning problem in decentralized framework is
still open
♣ Recent Work: Two-Sided Bandit Learning in Fully-Decentralized
Matching Markets; Tejas Pagare, Avishek Ghosh, 2023 (short version
ICML 2023 Workshop on Preference Learning, Full version under review)

♣ Spurious Markets: Handling adversaries amidst competition?
♣ Structured Markets: Linear/Contextual Bandits?

30 / 33

Reference

♣ Two-Sided Bandit Learning in Fully-Decentralized Matching Markets;
Tejas Pagare and Avishek Ghosh – International Conference on Machine
Learning (ICML) Workshop on Many Facets of Preference-Based
Learning, Hawaii, 2023

♣ Decentralized Competing Bandits In Non-Stationary Matching Markets
– Avishek Ghosh, Abishek Sankararaman, Kannan Ramchandran, Tara
Javidi and Arya Mazumdar– IEEE Transactions on Information Theory,
2023

31 / 33

Reference contd.

♣ Two-Sided Bandit Learning in Fully-Decentralized Matching Markets;
Tejas Pagare and Avishek Ghosh – available at https://tejassp2002.
github.io/assets/pdf/MFPL_Workshop_ICML_Tejas_Avishek.pdf

♣ Decentralized Competing Bandits In Non-Stationary Matching Markets
– Avishek Ghosh, Abishek Sankararaman, Kannan Ramchandran, Tara
Javidi and Arya Mazumdar– available at
https://arxiv.org/pdf/2206.00120.pdf

32 / 33

https://tejassp2002.github.io/assets/pdf/MFPL_Workshop_ICML_Tejas_Avishek.pdf
https://tejassp2002.github.io/assets/pdf/MFPL_Workshop_ICML_Tejas_Avishek.pdf
https://arxiv.org/pdf/2206.00120.pdf

Thank You

33 / 33

